Host Plant Cultivar Effects on Hydrogen Evolution by Rhizobium leguminosarum.
نویسندگان
چکیده
The effect of host plant cultivar on H(2) evolution by root nodules was examined in symbioses between Pisum sativum L. and selected strains of Rhizobium leguminosarum. Hydrogen evolution from root nodules containing Rhizobium represents the sum of H(2) produced by the nitrogenase enzyme complex and H(2) oxidized by any uptake hydrogenase present in those bacterial cells. Relative efficiency (RE) calculated as RE = 1 - (H(2) evolved in air/C(2) H(2) reduced) did not vary significantly among ;Feltham First,' ;Alaska,' and ;JI1205' peas inoculated with R. leguminosarum strain 300, which lacks uptake hydrogenase activity (Hup(-)). That observation suggests that the three host cultivars had no effect on H(2) production by nitrogenase. However, RE of strain 128C53 was significantly (P </= 0.05) greater in symbiosis with cultivar JI1205 than in root nodules of Feltham First. At a similar rate of C(2)H(2) reduction on a whole-plant basis, nearly 24 times more H(2) was evolved from the Feltham First/128C53 symbiosis than from the JI1205/128C53 association. Root nodules from the Alaska/128C53 symbiosis had an intermediate RE over the entire study period, which extended from 21 to 36 days after planting. Direct assays of uptake hydrogenase by two methods showed significant (P </= 0.05) host cultivar effects on H(2) uptake capacity of both strain 128C53 and the genetically related strain 3960. The (3)H(2) incorporation assay showed that strains 128C53 and 3960 in symbiosis with Feltham First had about 10% of the uptake hydrogenase activity measured in root nodules of Alaska or JI1205. These data are the first demonstration of significant host plant effects on rhizobial uptake hydrogenase in a single plant species.
منابع مشابه
Cultivar Effects on Hydrogen Evolution by Rhizobium leguminosarum ' Received
The effect of host plant cultivar on H2 evolution by root nodules was examined in symbioses between Pisum sativum L. and selected strains of Rhizobium leguminosarum. Hydrogen evolution from root nodules containing Rhizobium represents the sum of H2 produced by the nitrogenase enzyme complex and H2 oxidized by any uptake hydrogenase present in those bacterial cells. Relative efficiency (RE) calc...
متن کاملRhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum.
Lateral transfer of bacterial plasmids is thought to play an important role in microbial evolution and population dynamics. However, this assumption is based primarily on investigations of medically or agriculturally important bacterial species. To explore the role of lateral transfer in the evolution of bacterial systems not under intensive, human-mediated selection, we examined the associatio...
متن کاملEnvironmental and genotypic effects on the respiration associated with symbiotic nitrogen fixation in peas.
Estimated values for the respiration associated with symbiotic nitrogen fixation in Pisum sativum L. were independent of irradiance, temperature, plant age, and CO(2) concentration, despite large variation in the total rates of C(2)H(2) reduction and root + nodule respiration. Similar values were also found in Phaseolus vulgaris L., Vicia faba L. and Glycine max (L.) Merr. Among all combination...
متن کاملEffects of Boron on Rhizobium-Legume Cell-Surface Interactions and Nodule Development.
Boron (B) is an essential micronutrient for the development of nitrogen-fixing root nodules in pea (Pisum sativum). By using monoclonal antibodies that recognize specific glycoconjugate components implicated in legume root-nodule development, we investigated the effects of low B on the formation of infection threads and the colonization of pea nodules by Rhizobium leguminosarum bv viciae. In B-...
متن کاملDraft Genome Sequence of the Nitrogen-Fixing Rhizobium sullae Type Strain IS123T Focusing on the Key Genes for Symbiosis with its Host Hedysarum coronarium L.
The prominent feature of rhizobia is their molecular dialogue with plant hosts. Such interaction is enabled by the presence of a series of symbiotic genes encoding for the synthesis and export of signals triggering organogenetic and physiological responses in the plant. The genome of the Rhizobium sullae type strain IS123T nodulating the legume Hedysarum coronarium, was sequenced and resulted i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 72 4 شماره
صفحات -
تاریخ انتشار 1983